
small

small ii

COLLABORATORS

TITLE :

small

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

small iii

Contents

1 small 1

1.1 Amiga Little Smalltalk . 1

1.2 Introduction . 1

1.3 Acknowledgements . 3

1.4 Distribution . 4

1.5 Getting Started . 4

1.6 Stdin/Stdout Interface . 4

1.7 Windowing Interface . 5

1.8 Exploring and Creating . 6

1.9 New Methods and New Classes . 10

1.10 With Stdin/Stdout Interface . 10

1.11 With Windowing Interface . 11

1.12 Incompatibilities . 11

1.13 Implementors Guide . 12

1.14 Finding Your Way Around . 13

1.15 Defining System Characteristics . 14

1.16 Define Options . 15

1.17 Building an Initial Image . 16

1.18 Object Memory . 17

1.19 The Bottom End . 17

1.20 Editing . 17

1.21 Editing Under Unix . 18

1.22 Editing on the Macintosh . 19

1.23 Input/Output Commands . 20

1.24 Primitives . 20

1.25 Installation . 21

1.26 Atari . 21

1.27 Gnu C Compiler . 22

1.28 HP-UX . 22

1.29 IBM PC . 22

small iv

1.30 Macintosh . 23

1.31 Sequent Balance . 25

1.32 TekTronix 4315 . 25

1.33 VAX / VMS . 25

1.34 Test Cases . 25

1.35 Standard Windows . 26

1.36 Possible Changes . 26

1.37 New Features . 27

1.38 Differences from Smalltalk-80 . 27

1.39 Class Descriptions . 31

1.40 Class Object . 32

1.41 Class UndefinedObject . 34

1.42 Class Symbol . 34

1.43 Class Boolean . 35

1.44 Class True . 36

1.45 Class False . 36

1.46 Class Magnitude . 37

1.47 Class Char . 38

1.48 Class Number . 39

1.49 Class Integer . 41

1.50 Class Float . 43

1.51 Class Radian . 44

1.52 Class Point . 45

1.53 Class Random . 46

1.54 Class Collection . 47

1.55 Bag/Set . 50

1.56 KeyedCollection . 51

1.57 Dictionary . 53

1.58 Smalltalk . 54

1.59 SequenceableCollection . 55

1.60 Interval . 57

1.61 List . 58

1.62 Semaphore . 59

1.63 File . 60

1.64 ArrayedCollection . 61

1.65 Array . 62

1.66 ByteArray . 63

1.67 String . 63

1.68 Block . 65

1.69 Class . 66

1.70 Process . 68

1.71 Syntax Example . 68

1.72 References . 69

small 1 / 69

Chapter 1

small

1.1 Amiga Little Smalltalk

Introduction
A Little Smalltalk User Manual

Acknowledgements
Timothy A. Budd

Distribution

Getting Started

Stdin/Stdout Interface

Windowing Interface

Exploring and Creating

New Methods and New Classes

Class descriptions

Incompatibilities

Differences from Smalltalk-80

References

Installation

Implementor’s Guide

1.2 Introduction

Introduction

small 2 / 69

(Timothy Budd)

This manual is intended as an aid in using the Amiga Little
Smalltalk system. It is not intended to be used as an
introduction to the Smalltalk language. Little Smalltalk is
largely (with exceptions listed in a later section) a subset
of the Smalltalk-80 language described in

Smalltalk blue
. A complete description of the

classes included in the Amiga Little Smalltalk system and the
messages they accept is given in

Class descriptions
.

Actually, the class descriptions here are from version 1 of
Little Smalltalk. The right place to look for version 3 is
in the running system!

Version three of Little Smalltalk was designed specifically
to be easy to port to new machines and operating systems. This
document provides the basic information needed to use Version
Three of Little Smalltalk, plus information needed by those
wishing to undertake the job of porting the system to a new
operating environment.

The first version of Little Smalltalk, although simple,
small and fast, was in a number of very critical ways very Unix
specific. Soon after the publication of the book "A Little
Smalltalk", requests started flooding in asking if there existed
a port to an amazingly large number of different machines, such
as the IBM PC, the Macintosh, the Acorn, the Atari, and even
such systems as DEC VMS. Clearly it was beyond our capabilities
to satisfy all these requests, however in an attempt to meet
them partway in the summer of 1988 I designed a second version
of Little Smalltalk, which was specifically designed to be less
Unix specific and more amenable to implementation of different
systems.

Amiga Notes
(David Faught)

I have been spending some of my hobby time enhancing Little
Smalltalk, concentrating first on the programming environment.
Since this has been mainly for my own enjoyment, I took the easy
path and made these enhancements specific to my processor, a
Commodore Amiga 2000 running AmigaDOS 2.1. A couple of years ago,
I distributed an enhanced port of version 1 of Little Smalltalk
with the beginnings of a GUI interface to the programming
environment, and was planning out additions to the language
itself for manipulation of GUI objects. Then I got a copy of
version 3 of Little Smalltalk and dropped the version 1 project
because version 3 already had a windowing GUI included. All I had
to do was make it work on the Amiga! ;)

The first attempts at this used Guido Van Rossum’s Standard
Windows software, of which I ported the "alfa" version to the
Amiga. This was an attempt to keep even the GUI interface fairly

small 3 / 69

platform independent. This worked, but just didn’t give me what
I wanted. Then, with some encouragement, I decided that platform
independence isn’t everything and used Stefan Stuntz’s
MagicUserInterface in place of Standard Windows. This worked
much better and is actually much faster. There are several
differences between the way this interface works and the way the
original windowing interface from Timothy Budd works. Some day
I may get around to documenting them, but in the meantime just
double click and menu select away!

The documents that are distributed with Amiga Little
Smalltalk have been reformatted to be used with AmigaGuide, which
is a hypertext presentation tool now distributed with AmigaDOS.
Although in most cases in the source code for Amiga Little
Smalltalk, "#ifdef"s have been used to retain the original
flexibility, this documentation has definitely turned the corner
and is very much Amiga-specific. Many changes have been made to
the original text with no notations delimiting Amiga extensions.
If you would like the original documents, you will have to get
them via anonymous ftp from ftp.cs.orst.edu, or the version 1
documents are on Fred Fish’s disk number 37.

This AmigaGuide document is a conglomeration of Tim Budd’s
original version 1 and version 3 documents. It is mostly in sync
with Little Smalltalk version 3, but there are no guarantees!

1.3 Acknowledgements

Acknowledgements

Little Smalltalk was developed by Timothy A. Budd and a
group of his students at the University of Arizona in 1984.
The original version of this manual followed in 1986. A more
complete manual is

A Little Smalltalk
.

The Amiga port of version 1 of Little Smalltalk was done by
Bill Kinnersley at Washington State University and widely
distributed on Fred Fish’s disk number 37.

The first Amiga port of version 3 of Little Smalltalk
(that I know of) was done in 1993 by Dan Griffin.

MUI - MagicUserInterface Copyright © 1993-94 Stefan Stunz.

Standard Windows version 0.9.5 was written by Guido Van Rossum.
Amiga port by David A. Faught, circa 1994.

The "Amiga-ized" version 1 of Little Smalltalk and this
manual were done by David A. Faught in 1993. Version 3
in 1995.

* Smalltalk-80 is a trademark of the Xerox Corporation.

small 4 / 69

* Unix is a trademark of Bell Laboratories.

1.4 Distribution

Distribution

The Little Smalltalk system is public domain, and may
be distributed further as long as proper attribution is
given in all published references. The Amiga version is
dependent on the MagicUserInterface, which is not public
domain.

In the interests of keeping the distribution up to date
and as error free as possible, we wish to keep track of
known sites using the system. People interested should
contact Timothy Budd, at the address listed below.
Changes, modifications, or improvements to the code or the
standard library can be submitted also, and will be
considered for inclusion in future distributions.

The Little Smalltalk system is distributed without
responsibility for the performance of the system and without
any guarantee of maintenance.

Smalltalk Distribution
Department of Computer Science
Oregon State University
Corvallis, Oregon 97331
USA

budd@cs.orst.edu
faugdavd@nascom.com

1.5 Getting Started

Getting Started

How you get started depends upon what kind of system you
are working on. Currently there are two styles of interface
supported. A line-oriented, tty style stdin interface is
available, which runs under Unix and other systems. There is
also a window based system which runs under X-windows, on the
Mac, and on the Amiga.

1.6 Stdin/Stdout Interface

small 5 / 69

The Stdin/Stdout Interface

Using the stdin/stdout interface, there is a prompt (the
‘‘>’’ caracter) typed to indicate the system is waiting for
input. Expressions are read at the keyboard and evaluated
following each carrage return. The result of the expression is
then printed.

> 5 + 7
12

Global variables can be created simply by assigning to a name.
The value of an assignment statement is the value of the right
hand side.

x <- 3
3

Multiple expressions can appear on the same line separated by
periods. Only the last expression is printed.

y <- 17. 3 + 4
7

1.7 Windowing Interface

The Windowing Interface

The windowing interface is built on top of Guido Van
Rossums Standard Window package, and runs on top of systems that
support Standard Windows. These include X-11 and the
Macintosh (and the Amiga).

When you start up the system, there will be a single window
titled ‘‘workspace’’. You can enter expressions in the
workspace, then select either the menu items ‘‘do it’’ or
‘‘print it’’. Both will evaluate the expression; the latter, in
addition, will print the result.

A number of other memu commands are also available. These
permit you to save the current image, exit the system, or start
the browser.

The browser is an interface permiting you to easily view
system code. Selecting a class in the first pane of the browser
brings up a second pane in which you can select methods,
selecting a method brings up a third pane in which you can view
and edit text. Selecting ‘‘compile’’ following the editing of
text will attempt to compile the method. If no errors are
reported, the method is then available for execution.

small 6 / 69

1.8 Exploring and Creating

Exploring and Creating

This section describes how to discover information about
existing objects and create new objects using the Little
Smalltalk system (version three). In Smalltalk one
communicates with objects by passing messages to them. Even the
addition message + is treated as a message passed to the first
object 5, with an argument represented by the second object.
Other messages can be used to discover information about various
objects. The most basic fact you can discover about an object
is its class. This is given by the message "class", as in the
following examples:

> 7 class
Integer
> nil class
UndefinedObject

Occasionally, especially when programming, one would like
to ask whether the class of an object matches some known class.
One way to do this would be to use the message "= =", which
tells whether two expressions represent the same object:

> (7 class = = Integer)
True
> nil class = = Object
False

An easier way is to use the message "isMemberOf:";

> 7 isMemberOf: Integer
True
> nil isMemberOf: Integer
False

Sometimes you want to know if an object is an instance of a
particular class or one if its subclasses; in this case the
appropriate message is "isKindOf:".

> 7 isMemberOf: Number
False
> 7 isKindOf: Number
True

All objects will respond to the message "display" by
telling a little about themselves. Many just give their class
and their printable representation:

> 7 display
(Class Integer) 7
> nil display
(Class UndefinedObject) nil

Others, such as classes, are a little more verbose:

small 7 / 69

> Integer display
Class Name: Integer
SuperClass: Number
Instance Variables:
no instance variables
Subclasses:

The display shows that the class "Integer" is a subclass of
class "Number" (that is, class "Number" is the superclass of
"Integer"). There are no instance variables for this class, and
it currently has no subclasses. All of this information could
be obtained by means of other messages, although the "display"
form is the easiest. [Note: at the moment printing subclasses
takes a second or two. I’m not sure why.]

> List variables display
links
> Integer superClass
Number
> Collection subClasses display
IndexedCollection
Interval
List

About the only bit of information that is not provided when one
passes the message "display" to a class is a list of methods the
class responds to. There are two reasons for this omission; the
first is that this list can often be quite long, and we don’t
want to scroll the other information off the screen before the
user has seen it. The second reason is that there are really
two different questions the user could be asking. The first is
what methods are actually implemented in a given class. A list
containing the set of methods implemented in a class can be
found by passing the message "methods" to a class. As we saw
with the message "subClasses" shown above, the command "display"
prints this information out one method to a line:

> True methods display
#ifTrue:ifFalse:
#not

A second question that one could ask is what message
selectors an instance of a given class will respond to, whether
they are inherited from superclasses or are defined in the given
class. This set is given in response to the message
"respondsTo". [NOTE: again form some reason I’m not sure of
this command seems to take a long time to execute].

> True respondsTo display
#class
#==
#hash
#isNil
#display
#=
#basicSize

small 8 / 69

#isMemberOf:
#notNil
#print
#basicAt:put:
#isKindOf:
#basicAt:
#printString
#or:
#and:
#ifFalse:ifTrue:
#ifTrue:
#ifFalse:
#not
#ifTrue:ifFalse:

Alternatively, one can ask whether instances of a given
class will respond to a specific message by writing the message
selector as a symbol:

> String respondsTo: #print
True
> String respondsTo: #+
False

The inverse of this would be to ask what classes contain
methods for a given message selector. Class "Symbol" defines a
method to yield just this information:

> #+ respondsTo display
Integer
Number
Float

The method that will be executed in response to a given
message selector can be displayed by means of the message
"viewMethod:"

> Integer viewMethod: #gcd:
gcd: value

(value = 0) ifTrue: [^ self].
(self negative) ifTrue: [^ self negated gcd: value].
(value negative) ifTrue: [^ self gcd: value negated].
(value > self) ifTrue: [^ value gcd: self].
^ value gcd: (self rem: value)

Some Smalltalk systems make it very difficult for you to
discover the bytecodes that a method gets translated into.
Since the primary goal of Little Smalltalk is to help the
student to discover how a modern very high level language is
implemented, it makes sense that the system should help you as
much as possible discover everything about its internal
structure. Thus a method, when presented with the message
"display", will print out its bytecode representation.

> Char methodNamed: #isAlphabetic ; display
Method #isAlphabetic

isAlphabetic

small 9 / 69

^ (self isLowercase) or: [self isUppercase]
literals
Array (#isLowercase #isUppercase)
bytecodes
32 2 0
129 8 1
144 9 0
250 15 10
9 0 9
32 2 0
129 8 1
145 9 1
242 15 2
245 15 5
241 15 1

Bytecodes are represented by four bit opcodes and four bit
operands, with occasional bytes representing data (more detail
can be found in the book). The three numbers written on each
line for the bytecodes represent the byte value followed by the
upper four bits and the lower four bits.

If you have written a new class and want to print the
class methods on a file you can use the message "fileOut:",
after first creating a file to write to. Both classes and
individual methods can be filed out, and several classes and/or
methods can be placed in one file. [NOTE - file out doesn’t
work yet].

> f <- File new
> f name: ’foo.st’
> f open: ’w’
> Foo fileOut: f
> Bar fileOut: f
> Object fileOutMethod: #isFoo to: f
> f close

The file ‘‘newfile’’ will now have a printable representation of
the methods for the class Foo. These can subsequently be filed
back into a different smalltalk image.

> f <- File new
> f name: ’foo.st’
> f open: ’r’
> f fileIn
> 2 isFoo
False

Finally, once the user has added classes and variables and
made whatever other changes they want, the message "saveImage",
passed to the pseudo variable "smalltalk", can be used to save
an entire object image on a file. If the writing of the image
is successful, a message will be displayed.

> smalltalk saveImage
Image name? newimage
image newimage created

small 10 / 69

>

Typing control-\ causes the interpreter to exit.

When the Smalltalk system is restarted, an alternative
image, such as the image just created, can be specified by
giving its name on the argument line:

st newimage

Further information on Little Smalltalk can be found in the
book.

1.9 New Methods and New Classes

New Methods and New Classes

With Stdin/Stdout Interface

With Windowing Interface

1.10 With Stdin/Stdout Interface

Stdin/Stdout Interface

New functionality can be added using the message
"addMethod". When passed to an instance of "Class", this
message drops the user into a standard Unix Editor. A body for
a new method can then be entered. When the user exits the
editor, the method body is compiled. If it is syntactically
correct, it is added to the methods for the class. If it is
incorrect, the user is given the option of re-editing the
method. The user is first prompted for the name of the group to
which the method belongs.

> Integer addMethod
& ... drop into editor and enter the following text
% x

^ (x +)
& ... exit editor
compiler error: invalid expression start)
edit again (yn) ?
& ...

In a similar manner, existing methods can be editing by
passing their selectors, as symbols to the message
"editMethod:".

> Integer editMethod: #gcd:
& ... drop into editor working on the body of gcd:

small 11 / 69

The name of the editor used by these methods is taken from
a string pointed to by the global variable "editor". Different
editors can be selected merely by redefining this value:

editor <- ’memacs’

Adding a new subclass is accomplished by sending the
message "addSubClass:instanceVariableNames:" to the superclass
object. The the first argument is a symbol representing the
name, the second is a string containing the names of any
instance variables.

> Object addSubClass: #Foo instanceVariableNames: ’x y’
Object

Foo display
Class Name: Foo
SuperClass: Object
Instance Variables:
x
y

Once defined, "addMethod" and "editMethod:" can be used to
provide functionality for the new class.

New classes can also be added using the fileIn mechanism.

1.11 With Windowing Interface

The Windowing Interface

Using the windowing interface, new classes are created by
selecting the menu item "add class" in the first browser
window. New Methods are selected by choosing "new method" in
a subsequent window.

1.12 Incompatibilities

Incompatibilities with the Book

It is unfortunately the case that during the transition
from version 1 (the version described in the book) and version
3, certain changes to the user interface were required. I will
describe these here.

The first incompatibility comes at the very beginning. In
version 1 there were a great number of command line options.
These have all been eliminated in version three. In version
three the only command line option is the file name of an image
file.

The interface to the editor has been changed. In version

small 12 / 69

one this was handled by the system, and not by Smalltalk code.
This required a command format that was clearly not a Smalltalk
command, so that they could be distinguished. The convention
adopted was to use an APL style system command:

)e filename
In version three we have moved these functions into Smalltalk
code. Now the problem is just the reverse, we need a command
that is a Smalltalk command. In addition, in version one entire
classes were edited at once, whereas in version three only
individual methods are edited. As we have already noted, the
new commands to add or edit methods are as follows:

"classname" addMethod
"classname" editMethod: "methodname"

The only other significant syntactic change is the way
primitive methods are invoked. In version one these were either
named or numbered, something like the following:

<primitive 37 a b>
<IntegerAdd a b>

In version three we have simply eliminated the keyword
"primitive", so primitives now look like:

<37 a b>

There are far fewer primitives in version three, and much
more of the system is now performed using Smalltalk code.

In addition to these syntactic changes, there are various
small changes in the class structure. I hope to have a document
describing these changes at some point, but as of right now the
code itself is the best description.

1.13 Implementors Guide

Implementors Information

The remainder of this document contains information
necessary for those wishing to examine or change the source code
for the Little Smalltalk system.

Finding Your Way Around

Defining System Characteristics

Define Options

Building an Initial Image

Object Memory

small 13 / 69

The Bottom End

Editing

Editing Under Unix

Editing On The Macintosh

Input/Output Commands

Primitives

1.14 Finding Your Way Around

Finding Your Way Around

In this section we describe the files that constitute
version three of the Little Smalltalk system.

memory.c :
This is the memory manager, the heart of the Little
Smalltalk system. Although it uses a straightforward
reference counting scheme, a fair amount of design effort
has gone into making it as fast as possible. By modifying
it’s associated description file (memory.h) a number of
operations can be specified either as macros or as function
calls. The function calls generally perform more error
checking, and should be used during initial development.
Using macros, on the other hand, can improve performance
dramatically. At some future date we hope to make
available both reference counting and garbage collection
versions of the memory manager.

names.c :
The only data structures used internally in the Little
Smalltalk system are arrays and name tables. A name table
is simply an instance of class "Dictionary" in which keys
are symbols. Name tables are used to implement the
dictionary of globally accessible values, "symbols", and to
implement method tables. This module provides support for
reading from name tables.

news.c :
This module contains several small utility routines which
create new instances of various standard classes.

interp.c :
This module implements the actual bytecode interpreter. It
is the heart of the system, where most execution time is
spent.

primitive.c :
This module contains the code that is executed to perform
primitive operations. Only the standard primitives (see

small 14 / 69

the section on primitives) are implemented in this module.
File primitives and system specific primitives are
implemented in another module, such as unixio.c for the
Unix system and macio.c for the Macintosh version.

unixio.c :
These two modules contains I/O routines.

lex.c :
The files lex.c and parser.c are the lexical analyzer and
parser, respectively, for compiling the textual
representation of methods into bytecodes. In the current
version parsing is done using a simple (although large)
recursive descent parser.

st.c :
The file st.c is the front end for the Unix version of
Little Smalltalk. On the Macintosh version it is replaced
by the pair of files macmain.c and macevent.c.

initial.c :
This module contains code that reads the module form of
Smalltalk code, creating an object image. This is not part
of the Smalltalk bytecode interpreter, but is used in
building the initial object image (see next section).

There are description files (.h files, in standard C
convention) which describe many of the modules described above.
In addition, there is a very important file called env.h (for
‘‘environment’’). This file describes the characteristics of
the operating system/machine you are running on. The general
structure of this file is that the user provides one definition
for their system, for example

define LIGHTC

to indicate using the Lightspeed C compiler on the Macintosh,
for example. Following this are block of code which, based on
this one definition, define other terms representing the
specific attributes of this system. Where ever possible new
code should be surrounded by "ifdef" directives based on words
defined in this manner. The next section describes this in more
detail.

1.15 Defining System Characteristics

Defining System Characteristics

There are many ways in which compilers and operating
systems differ from each other. A fair amount of work has been
expanded in making sure the software will operate on most
machines, which requires that different code fragments be used
on different systems. In large part these are controlled by a
single ‘‘meta-define’’ in the file env.h. Setting this one
value then causes the expansion of another code segment, which

small 15 / 69

then defines many more options.

In the event that you are attempting to port the software
to a system that has not previously been defined, you will need
to decide which set of options to enable. The next two sections
contain information you may need in making this determination.

1.16 Define Options

Define Options

Many options are specified merely by giving or not giving a
DEFINE statement in the file env.h. The following table
presents the meaning for each of these values:

ALLOC :
Defined If there is an include file called alloc.h which
defines calloc, malloc, and the like.

BINREADWRITE :
Defined if the fopen specification for binary files must
include the "b" modifier. This is true on many MS-DOS
inspired systems.

NOENUMS :
Defined if enumerated datatypes are not supported. If
defined, these will be replaced by #define constants.

NOTYPEDEF :
Defined if the typedef construct is not supported. If
defined, these will be replaced by #define constructs.

NOVOID :
Defined if the void keyword is not recognized. If defined,
expect "lint" to complain a lot about functions returning
values which are sometimes (or always) ignored.

SIGNALS :
Used if BOTH the <signals.h> package and the <longjmp.h>
package are available, and if the routine used to set
signals is signal. Incompatible with "SSIGNALS".

SSIGNALS :
Used if BOTH the <signals.h> package and the <longjmp.h>
package are available, and if the routine used to set
signals is ssignal. Incompatible with "SIGNALS".

STRING :
Used if the string functions (strcpy, strcat and the like)
are found in <string.h>. This switch is incompatible with
"STRINGS".

STRINGS :
Used if the string functions (strcpy, strcat and the like)
are found in <strings.h>. This switch is incompatible with

small 16 / 69

"STRING".

In addition, several routines can optionally be replaced by
macros for greater efficiency. See the file memory.h for more
information.

1.17 Building an Initial Image

Building an Initial Object Image

There are two programs used in the Little Smalltalk
system. The first is the actual bytecode interpreter. The use
of this program is described in detail in other documents (see
‘‘Exploring and Creating’’). The Little Smalltalk system
requires, to start, a snapshot representation of memory. This
snapshot is called an object image, and the purpose of the
second program, the initial object image maker, is to construct
an initial object image. In theory, the this program need only
be run once, by the system administrator, and thereafter all
users can access the same standard object image.

The object image format is binary. However, since the
format for binary files will undoubtedly differ from system to
system, the methods which will go into the initial image are
distributed in textual form, called module form. Several
modules are combined to create an object image. The following
describes the modules distributed on the standard tape, in the
order they should be processed, and their purposes.

basic.st :
This module contains the basic classes and methods which
should be common to all implementations of Little
Smalltalk.

mag.st :
This module contains methods for those objects having
magnitude, which are the basic subclasses of Magnitude.

collect.st :
This module contains methods for the collection
subclasses.

file.st :
This module contains the classes and methods used for file
operations. Although all implementations should try to
support these operations, it may not always be possible on
all systems.

unix.st :
This module contains unix - specific commands, which may
differ from those used under other operating systems.

mult.st :
This module contains code for the multiprocessing
scheduler.

small 17 / 69

init.st :
This module contains code which is run to initialize the
initial object image. These methods disappear after they
have been executed. (or should; they don’t really yet).

test.st :
This file contains various test cases.

1.18 Object Memory

Object Memory

There are several datatypes, not directly supported by C,
that are used in the Little Smalltalk system. The first of
these is the datatype byte. A byte is an eight bit unsigned
(hence positive) quantity. On many systems the appropriate
datatype is unsigned char, however on other systems this
declaration is not recognized and other forms may be required.
To aid in coverting to and from bytes the macro byteToInt() is
used, which converts a byte value into an integer. In addition,
the routines byteAt and byteAtPut are used to get and put bytes
from byte strings.

The other datatype is that used to represent object
points. On most machines in which a short is 16 bits, the
datatype short should suffice. Much more information on the
memory module can be found in the file memory.h.

1.19 The Bottom End

The Bottom End

The opposite extreme from the front end are those messages
that originate within the Smalltalk bytecode interpreter and
must be communicated to the user. We can divide these into two
different classes of communications, editing operations and
input/output operations. The following sections will treat each
of these individually.

1.20 Editing

Editing

We have already mentioned that commands entered by the user
are converted into methods, and passed to the same method
compiler as all other methods. Before the user can create a new
method, however, there must be some mechanism for allowing the
user to enter the method.

small 18 / 69

One approach would be to read the method from the standard
input, just as commands are read. While easy to implement,
this approach would soon prove unsatisfactory, since for every
error the user would need to reenter the entire method. So some
form of update, or editing, must be provided. Again, the Unix
interface and the Macintosh interface solve this problem in
radically different ways.

1.21 Editing Under Unix

Editing Under Unix

A request to edit or add a method is given by sending
either the message "addMethod" or "editMethod:" to a class. The
methods for these messages in turn call upon a common routine to
perform the actual editing work.

addMethod
self doEdit: ’’

editMethod: name
self doEdit: (methods at: name

ifAbsent: [’no such method ’ print. ^ nil]) text

doEdit: startingText | text |
text <- startingText.
[text <- text edit.

(self addMethodText: text)
ifTrue: [false]
ifFalse: [smalltalk inquire: ’edit again (yn) ? ’]

] whileTrue

The Unix and MS-DOS versions of the system provide a method
"edit" as part of the functionality of class "String". When
"edit" is passed to a string, an editing environment is
established. The user performs editing tasks in that
environment, and then exits the editing environment. Under
Unix, this functionality is implemented using the file system.

edit | file text |
file <- File new;

scratchFile;
open: ’w’;
print: self;
close.

(editor, ’ ’, file name) unixCommand.
file open: ’r’.
text <- file asString.
file close; delete.
^ text

A file is created, and the contents of the string written
to it. Then a standard Unix editor (given by the global
variabled "editor") is invoked to process the file. After the
user exits the editor, the contents of the file are read back as

small 19 / 69

a string, the file is closed and deleted, and the string
returned. The command "unixCommand" is implemented as a
primitive, which invokes the system() system call:

unixCommand
^ <150 self>

Although the "edit" message is used by the system only for
editing methods, it is general enough for any editing
application and there is no reason why the user cannot use it
for other purposes. By the way, the "unixCommand" message is
also used to implement file deletes.

delete
(’rm ’, name) unixCommand

On MS-Dos systems this command should be changed to "DEL".

1.22 Editing on the Macintosh

Editing on the Macintosh

The Macintosh version takes an entirely different approach
to the editing of methods. As in the Unix version, the user
requests editing using the commands "editMethod:" and
"addNewMethod". And, as in the Unix version, these in turn
invoke a common method.

addMethod
self doEdit: (self printString, ’: new method’) text: ’’

editMethod: name
self doEdit: (self printString, ’: ’, name)

text: (methods at: name
ifAbsent: [’no such method’ print. ^ nil]) text

Here, however, when the user asks to edit a method, a new
"editing window" is created.

doEdit: title text: text | w |
w <- EditWindow new;

acceptTask: [self addMethodText: w getString] ;
title: title; create; print: text; showWindow

The edit window is initialized with the current text of the
method. Thereafter, the user can edit this using the standard
Macintosh cut and paste conventions. The user signifies they
are satisfied with the result by entering the command "accept",
which causes the "acceptTask:" block to be executed. This block
gets the text of the window (given by the message "getString")
and passes it to "addMethodText:", which compiles the method,
entering it in the method table if there are no errors.

small 20 / 69

1.23 Input/Output Commands

Input/Output Commands

Under the Unix system all input/output operations are
performed using the file system and the global variables stdin,
stdout and stderr. Thus the message "error:", in class
"Smalltalk", merely prints a message to the standard error
output and exits.

The Macintosh version, although using the same file
routines, does not have any notion of standard input or standard
output. Thus error messages (such as from "error:") result in
alert boxes being displayed.

There are also error messages that come from inside the
Smalltalk interpreter itself. These are of two types, as
follows:

1. System errors. These are all funnelled through the
routine sysError(). System errors are caused by dramatically
wrong conditions, and should generally cause the system to abort
after printing the message passed as argument to sysError().

2. Compiler errors. As we noted earlier, the method
compiler is used to parse expressions typed directly at the
keyboard, so these message can also arise in that manner. These
are all funnelled through the routines compilError() and
compilWarn(). These should print their arguments (two strings),
in an appropriate location on the users screen. Execution
continues normally after call.

1.24 Primitives

Primitives

Primitives are the means whereby actions that cannot be
described directed in Smalltalk are performed. In version three
of the Little Smalltalk system, primitives are divided into
three broad categories.

1. Primitives numbered less than 119 are all standard, and
both the meaning and the implementation of these should be the
same in all implementations of Little Smalltalk. These are
largely just simple actions, such as mathematical operations.

2. Primitives numbered 120-139 are reserved for file
operations. Although the meaning of these primitives should
remain constant across all implementations, their implementation
may differ.

3. Primitives number 150-255 are entirely implementation
specific, and thus in porting to a new system the implementor is
free to give these any meaning desired. For example under the

small 21 / 69

Unix version there is, at present, only one such primitive,
used to perform the system() call. On the other hand, the
Macintosh version has dozens of primitives used to implement
graphics functions, windowing function, editing and the like.

1.25 Installation

Installation Instructions

The following lists installation instructions for those
systems to which Version 3 of Little Smalltalk has been ported
at present. Note that installation involves the creation of two
programs. The first, called ‘‘initial’’, is run once to create
the initial object image (usually a filed called
‘‘systemImage’’). The second program is the Smalltalk
interpreter. To run Smalltalk, both these files must be
accessible. Systems that use the supplied Makefile run initial
automatically; in some other systems you may need to do this
manually.

If you receive the distribution on Mac or IBM disks and you
want to run the system under Unix you must ‘‘undo’’ some of the
changes described below.

Atari

Gnu C Compiler (Amiga)

HP-UX

IBM PC

Macintosh

Sequent Balance

TekTronix 4315

VAX / VMS

Test Cases

Standard Windows

Possible Changes

New Features

1.26 Atari

small 22 / 69

Atari

I’ve been told (no first hand experience) that the code
works on the Atari. I’ve set up a minimal description in env.h
- could somebody tell me if the Atari supports prototypes,
signals, or some of the other features?

You do have to make the ’rb’ changes described for the IBM
PC (below), however you keep the rm instruction instead of DEL,
and change the editor to whatever your system has (memacs?).

1.27 Gnu C Compiler

Gnu C Compiler

If at all possible, USE THE GNU C COMPILER. I have found
the code to be much smaller (up to 1/3 smaller) and much faster
(up to twice as fast). So far this has been used on the Sequent
Balance system, and the Amiga.

Note that these sources support old style prototypes, as
are used in Lightspeed C and Turbo C, and not the newer ANSI
prototypes as are used in the gcc compiler. So do not define
PROTO when using the gcc compiler

1.28 HP-UX

HP-UX

Simply say ‘‘make sysvtty’’ to make a version with the tty
interface. (As of yet, I don’t have access to a system V system
with an X-window interface, so I can’t test that code).

1.29 IBM PC

IBM PC / Turbo C compiler

NOTE: If you receive the sources on 5 1/2 disks containing both
source and executable, the following changes have already been
made to the system.

Define the symbol TURBOC at the beginning of the file
env.h.

Edit the file file.st, changing the command used to delete
files from rm to del (notice the space following the del):

delete
(’del ’, name) unixCommand

small 23 / 69

In the file file.st change the mode on the command to save
images from w to wb.

saveImage: name
scheduler critical: [

" first get rid of our own process "
scheduler removeProcess: scheduler currentProcess.

File new;
name: name;
open: ’wb’;
saveImage;
close]

In a similar manner change the mode on the file open in the
initialize method in file tty.st to use wb instead of w.

initialize
" initialize the initial object image "
self createGlobals.
File new;

name: ’systemImage’;
open: ’wb’;
saveImage;
close.

And also in tty.st change the editor from vi to me (or whatever
your favorite editor happens to be).

editor (<- ’me’.

Because of segmentation limits it is not possible to have
an object table any larger than 6500 objects (the current
default). This value is set by a define found in memory.h

define ObjectTableMax 6500

Compile in the compact mode (small code, large data).

1.30 Macintosh

Macintosh Lightspeed C

NOTE: If you get the distribution on 3 1/4 Mac Disks the
source code changes described below have probably already been
made for you.

The Mac distribution disk contains the following.

(a) A folder called ‘‘C Sources’’ that contains (naturally)
all the C sources.

(b) A folder called ‘‘ST Sources’’ that contains (also
naturally) all the Smalltalk sources, plus an
application called ‘‘initial’’ that can be used to

small 24 / 69

create or recreate the initial object image. To make
changes to the image, simply edit the appropriate
Smalltalk files, run initial, and move the file
‘‘systemImage’’ to the appropriate location.

(c) Two Lightspeed C projects called ‘‘TextEdit’’ and
‘‘Stdwin’’, containing code taken from Guido Van
Rossums Standard Windows package.

(d) A file called ‘‘systemImage’’, which is the output of
the application from part (b)

(e) An application called ‘‘st’’, which is the Smalltalk
interpreter.

(f) A folder called ‘‘misc’’ that contains various
different files, such as documentation and other things.

It is only necessary to recompile if you make changes to
the C source. If you make changes to the Smalltalk source you
only need to rerun the application called ‘‘initial’’ contained
in the ‘‘ST Sources’’ folder.

If you get the sources from some other location (say off
the net), you must make the following alterations. Change the
mode on the file open in the saveImage command (in file.st) and
in the initalize command (file stdwin.st). Define the symbol
LIGHTC at the beginning of the file env.h (See instructions for
the IBM PC above for a fuller explanation).

To compile you need Guido Van Rossum’s Standard Windows
package. Follow his instructions to create the stdwin and
textedit projects (these are already on the distribution disk).
To make the initial program, create a project ‘‘initialProj’’
with segments as follows. In the first segment place
MacTraps. In the second segment place Stdwin. In the third
place TextEdit. In the forth place the Unix library files math,
stdio, storage, strings and unix. In the fifth place the
sources filein.c, initial.c, interp.c, memory.c, names.c,
news.c, primitives.c, unixio.c and winprims.c. In the sixth and
final segment place lex.c and parser.c. To create the st
program use the same structure, subsituting st.c for initial.c.
You must check the ‘‘separate STRS’’ option on both projects.

Make sure when you run the initial object that all the
Smalltalk sources are in the current directory; it does not
complain if it can’t open a file, it simply goes on. Also when
you fileIn a file, the file must be in the current directory.

The Mac version uses the windowing interface. It is
currently very fragile. (A few known bugs; can’t restore from
saved image files, output sometimes goes wrong places, output
often doesn’t appear until you click the mouse).

[It would be nice if clicking on an image file would start
the Smalltalk application. If anybody knows how to make

small 25 / 69

Lightspeed C do this, let me know. Thanks].

1.31 Sequent Balance

Sequent Balance

Say ‘‘make bsdtty’’ to make a tty interface system.

1.32 TekTronix 4315

TekTronix 4315, Green Hills C Compiler

Say ‘‘make bsdtty’’ to make a tty interface system. Say
‘‘make bsdx11’’ to make an x-windows interface system (still
somewhat buggy).

1.33 VAX / VMS

VAX / VMS

Since VMS doesn’t understand Unix Makefiles, the
distribution tape supplies a command file you can use. First
define the symbol VMS near the begining of the file env.h, then
execute the command file called vms.com. This makes a version
using the tty interface. A VMS version using the X-windows
interface has not been created yet.

1.34 Test Cases

Test Cases

One you have a running system; the following can be used to
run the standard test cases. First load the file test.st. If
you are using the windowing interface select the fileIn menu
item and the file ‘‘test.st’’ (from the ST Sources folder), if
you are using the tty interface use the following command

File new; fileIn: ’test.st’

Then give the command to run all test cases.

Test new all

Messages will be displayed as test cases are performed, and if
any test cases fail.

small 26 / 69

1.35 Standard Windows

The Standard Window Package

There is an experimental windows style interface based on
Guido Van Rossums standard window package. This permits the
system to work on top of X-windows, as well as the Macintosh.
Information on Standard Windows can be obtained directly from
Guido at guido@mcvax.uucp, or mcvax!guido, or possibly
gvr@src.dec.com. His paper mail address is Guido van Rossum,
Center for Mathematics and Computer Science, P.O. Box 4079, 1009
AB Amsterdam, The Netherlands. Sources for the standard window
package are not included on the Little Smalltalk distribution,
but they are available public domain by ftp from DEC SRC,
machine gatekeeper.dec.com (address [128.45.9.52]). The
subdirectory is pub/stdwin. Contact Guido for more details.

To make the projects for the Macintosh version, follow
Guidos instructions. For other versions, make a file stdw.o by
linking together all of Guidos sources for your particular
system. Here is a makefile for the X11 version, for example.

#
X11 version of stdwins
#
x11 = caret.o draw.o font.o menu.o timer.o cutbuffer.o
error.o general.o scroll.o window.o dialog.o event.o
llevent.o system.o
alfa = bind.o draw.o event.o keymap.o measure.o menu.o scroll.o stdwin.o syswin. ←↩

o
gen = askfile.o perror.o
textedit = editwin.o textdbg.o textedit.o textlow.o textbrk.o
tools = endian.o getopt.o glob.o monocase.o strdup.o swap.o
x11files =

stdw.o:
ld -r -o stdw.o

I emphasize this interface is very fragile.

1.36 Possible Changes

Possible Changes

There are a couple of easy changes you may want to make at
your site. The default editor is vi (indicated by the value of
the global variable set in the routine createGlobals in either
tty.st or stdwin.st); this can be changed to any other editor
you like. The system also prints the current object count prior
to asking for commands from the user. This can be eliminated by
removing the primitive <2> from the method initialize, class
Scheduler, file tty.st.

small 27 / 69

1.37 New Features

New Features

If you type ‘‘smalltalk echo’’ all input will be echoed
(tty interface only). Typing smalltalk echo again undoes this.
This is useful for reading from scripts.

1.38 Differences from Smalltalk-80

Differences between Little Smalltalk and the Smalltalk-
80 system

This section describes the differences between the
language accepted by the Little Smalltalk system and the
language described in

Smalltalk blue
. The principal

reasons for these changes are as follows:

size Classes which are largely unnecessary, or which could
be easily simulated by other classes (e.g. Associa-
tion, SortedCollection) have been eliminated in the
interest of keeping the size of the standard library
as small as possible. Similarly, indexed instance
variables are not supported, since to do so would
increase the size of every object in the system, and
they can be easily simulated in those classes in which
they are important (see below).

portability
Classes which depend upon particular hardware (e.g.
BitBlt) are not included as part of the Little
Smalltalk system. The basic system assumes nothing
more than ascii terminals.

representation
The need for a textual representation for class
descriptions required some small additions to the syn-
tax for class methods (see

Syntax Example
). Similarly,

the fact that classes and subclasses can be separately
parsed, in either order, forced some changes in the
scoping rules for instance variables.

The following sections describe these changes in more
detail.

3.1. No Browser

The Smalltalk-80 Programming Environment described in

Smalltalk orange

small 28 / 69

is not included as part of the Little
Smalltalk system. The Little Smalltalk system was designed
to be little, easily portable, and to rely on nothing more
than basic terminal capabilities. A windowing interface is
now included, but has far less capability than Smalltalk-80.

3.2. Internal Representation Different

The internal representations of objects, including
processes, interpreters, and bytecodes, is entirely dif-
ferent in the Little Smalltalk system from the Smalltalk-80
system described in

Smalltalk blue
.

3.3. Fewer Classes

Many of the classes described in
Smalltalk blue
are

not included as part of the Little Smalltalk basic system.
Some of these are not necessary because of the decision not
to include the editor, browser, and so on as part of the
basic system. Others are omitted in the interest of keeping
the standard library of classes small. A complete list of
included classes for the Little Smalltalk system is given in

Class Descriptions
.

3.4. No Class Protocol

Protocol for all classes is defined as part of class
Class. It is not possible to redefine class protocol as
part of a class description, only instance protocol. The
notion of metaclasses is not supported.

3.5. Cascades Different

The semantics of cascades has been simplified and gen-
eralized. The result of a cascaded expression is always the
result of the expression to the left of the first semicolon,
which is also the receiver for each subsequent continuation.
Continuations can include multiple messages. A rather non-
sensical, but illustrative, example is the following:

2 + 3 ; - 7 + 3 ; * 4

The result of this expression is 5 (the value yielded by 2 +
3). 5 is also the receiver for the message - 7, and that
result (-2) is in turn the receiver for the message + 3.
This last result is thrown away. 5 is then again used as
the receiver for the message * 4, the result of which is
also thrown away.

3.6. Instance Variable Name Scope

small 29 / 69

In the language described in
Smalltalk blue
, an

instance variable is known not only to the class protocol in
which it is declared, but is also valid in methods defined
for any subclasses of that class. In the Little Smalltalk
system an instance variable can be referenced only within
the protocol for the class in which it is declared.

3.7. Indexed Instance Variables

Implicitly defined indexed instance variables are not
supported. In any class for which these are desired they
can be easily simulated by including an additional instance
variable, containing an Array, and including the following
methods:

Class Whatever
| indexVars |
[

new: size
indexVars <- Array new: size

| at: location
^ indexVars at: location

| at: location put: value
indexVars at: location put: value

...

The message new: can be used with any class, with an
effect similar to new. That is, if a new instance of the
class is created by sending the message new: to the class
variable, the message is immediately passed on to the new
instance, and the result returned is used as the result of
the creation message.

3.8. No Pool Variables

The concepts of pool variables, global variables, or
class variables are not supported. In their place there is
a new pseudo-variable, smalltalk, which responds to the mes-
sages at: and at:put:. The keys for this collection can be
arbitrary. Although this facility is available, its use is
often a sign of poor program design, and should be avoided.

3.9. No Associations

The class Dictionary stores keys and values separately,
rather than as instances of Association. The class Associa-
tion, and all messages referring to Associations have been
removed.

small 30 / 69

3.10. Generators in place of Streams

The notion of stream has been replaced by the slightly
different notion of generators, in particular the use of the
messages first and next in subclasses of Collection. Exter-
nal files are supported by an explicit class File.

3.11. Primitives Different

Both the syntax and the use of primitives has been
changed. Primitives provide an interface between the
Smalltalk world and the underlying system, permitting the
execution of operations that cannot be specified in
Smalltalk. In Little Smalltalk, primitives cannot fail and
must return a value (although they may, in error situations,
print an error message and return nil). The syntax for
primitives has been altered to permit the specification of
primitives with an arbitrary number of arguments. The for-
mat for a primitive call is as follows:

<primitive number argumentlist >

Where number is the number of the primitive to be executed
(which must be a value between 1 and 255), and argumentlist
is a list of Smalltalk primary expressions (see Appendix 2).

Primitive numbers
lists the meanings of each of the

currently recognized primitive numbers.

3.12. Byte Arrays

A new syntax has been created for defining an array
composed entirely of unsigned integers in the range 0-255.
These arrays are given a very tight encoding. The syntax is
a pound sign, followed by a left square brace, followed by a
sequence of numbers in the range 0 to 255, followed by a
right square brace.

#[numbers]

Byte Arrays are used extensively internally.

3.13. New Pseudo Variables

In addition to the pseudo variable smalltalk already
mentioned, another pseudo variable, selfProcess, has beed
added to the Little Smalltalk system. selfProcess returns
the currently executing process, which can then be passed as
an argument to a semaphore, or be used as a receiver for a
message valid for class Process. Like self and super,
selfProcess cannot be used at the command level.

3.14. No Dependency

The notion of dependency, and automatic dependency

small 31 / 69

updating, is not included in Little Smalltalk.

1.39 Class Descriptions

The messages accepted by the classes included in the
Little Smalltalk standard library are described in the fol-
lowing pages. A list of the classes defined, where indenta-
tion is used to imply subclassing, is given below. Note that
this is actually the structure from version 1 of Little
Smalltalk. The proper structure for version 3 is in the
running system. Try it out!

Object

UndefinedObject

Symbol

Boolean

True

False

Magnitude

Char

Number

Integer

Float

Radian

Point

Random

Collection

Bag

Set

KeyedCollection

Dictionary

Smalltalk

SequenceableCollection

small 32 / 69

Interval
LinkedList

Semaphore

File

ArrayedCollection

Array

ByteArray

String

Block

Class

Process

1.40 Class Object

Object

The class Object is a superclass of all classes in the
system, and is used to provide a consistent basic func-
tionality and default behavior. Many methods in class
Object are overridden in subclasses.

Responds to

== Return true if receiver and argument are the
same object, false otherwise.

~~ Inverse of ==.

asString Return a string representation of the
receiver, by default this is the same as
printString, although one or the other is
redefined in many subclasses.

asSymbol Return a symbol representing the receiver.

class Return object representing the class of the
receiver.

copy Return shallowCopy of receiver. Many subc-
lasses redefine shallowCopy.

deepCopy Return the receiver. This method is rede-
fined in many subclasses.

do: The argument must be a one argument block.
Execute the block on every element of the

small 33 / 69

receiver collection. Elements in the
receiver collection are listed using first
and next (below), so the default behavior is
merely to execute the block using the
receiver as argument.

error: Argument must be a String. Print argument
string as error message. Return nil.

first Return first item in sequence, which is by
default simply the receiver. See next,
below.

isKindOf: Argument must be a Class. Return true if
class of receiver, or any superclass thereof,
is the same as argument.

isMemberOf: Argument must be a Class. Return true if
receiver is instance of argument class.

isNil Test whether receiver is object nil.

next Return next item in sequence, which is by
default nil. This message is redefined in
classes which represent sequences, such as
Array or Dictionary.

notNil Test if receiver is not object nil.

print Display print image of receiver on the stan-
dard output.

printString Return a string representation of receiver.
Objects which do not redefine printString,
and which therefore do not have a printable
representation, return their class name as a
string.

respondsTo: Argument must be a symbol. Return true if
receiver will respond to the indicated mes-
sage.

shallowCopy Return the receiver. This method is rede-
fined in many subclasses.

Examples

Printed result

7 ~~ 7.0 True
7 asSymbol #7
7 class Integer
7 copy 7
7 isKindOf: Number True
7 isMemberOf: Number False
7 isNil False

small 34 / 69

7 respondsTo: #+ True

1.41 Class UndefinedObject

Object
UndefinedObject

The pseudo variable nil is an instance (usually the
only instance) of the class UndefinedObject. nil is used to
represent undefined values, and is also typically returned
in error situations. nil is also used as a terminator in
sequences, as for example in response to the message next
when there are no further elements in a sequence.

Responds to

isNil Overrides method found in Object. Return
true.

notNil Overrides method found in Object. Return
false.

printString Return ’nil’.

Examples

Printed result

nil isNil True

1.42 Class Symbol

Object
Symbol

Instances of the class Symbol are created either by
their literal representation, which is a pound sign followed
by a string of nonspace characters (for example #aSymbol),
or by the message asSymbol being passed to an object. Sym-
bols cannot be created using new. Symbols are guaranteed to
have unique representations; that is, two symbols represent-
ing the same characters will always test equal to each
other. Inside of literal arrays, the leading pound signs on
symbols can be eliminated, for example: #(these are sym-
bols).

Responds to

== Return true if the two symbols represent the
same characters, false otherwise.

asString Return a String representation of the symbol

small 35 / 69

without the leading pound sign.

printString Return a String representation of the symbol,
including the leading pound sign.

Examples

Printed result

#abc == #abc True
#abc == #ABC False
#abc ~~ #ABC True
#abc printString #abc
’abc’ asSymbol #abc

1.43 Class Boolean

Object
Boolean

The class Boolean provides protocol for manipulating
true and false values. The pseudo variables true and false
are instances of the subclasses of Boolean; True and False,
respectively. The subclasses True and False, in combination
with blocks, are used to implement conditional control
structures. Note, however, that the bytecodes may optimize
conditional tests by generating code in-line, rather than
using message passing. Note that bit-wise boolean opera-
tions are provided by class Integer.

Responds to

& The argument must be a boolean. Return the
logical conjunction (and) of the two values.

| The argument must be a boolean. Return the
logical disjunction (or) of the two values.

and: The argument must be a block. Return the
logical conjunction (and) of the two values.
If the receiver is false the second argument
is not used, otherwise the result is the
value yielded in evaluating the argument
block.

or: The argument must be a block. Return the
logical disjunction (or) of the two values.
If the receiver is true the second argument
is not used, otherwise the result is the
value yielded in evaluating the argument
block.

eqv: The argument must be a boolean. Return the
logical equivalence (eqv) of the two values.

small 36 / 69

xor: The argument must be a boolean. Return the
logical exclusive or (xor) of the two values.

Examples

Printed result

(1 > 3) & (2 < 4) False
(1 > 3) | (2 < 4) True
(1 > 3) and: [2 < 4] False

1.44 Class True

Object
Boolean

True

The pseudo variable true is an instance (usually the
only instance) of the class True.

Responds To

ifTrue: Return the result of evaluating the argument
block.

ifFalse: Return nil.

ifTrue:ifFalse:
Return the result of evaluating the first
argument block.

ifFalse:ifTrue:
Return the result of evaluating the second
argument block.

not Return false.

Examples

Printed result

(3 < 5) not False
(3 < 5) ifTrue: [17] 17

1.45 Class False

Object
Boolean

False

The pseudo variable false is an instance (usually the
only instance) of the class False.

small 37 / 69

ifTrue: Return nil.

ifFalse: Return the result of evaluating the argument
block.

ifTrue:ifFalse:
Return the result of evaluating the second
argument block.

ifFalse:ifTrue:
Return the result of evaluating the first
argument block.

not Return true.

Examples

Printed result

(1 < 3) ifTrue: [17] 17
(1 < 3) ifFalse: [17] nil

1.46 Class Magnitude

Object
Magnitude

The class Magnitude provides protocol for those subc-
lasses possessing a linear ordering. For the sake of effi-
ciency, most subclasses redefine some or all of the rela-
tional messages. All methods are defined in terms of the
basic messages <, = and >, which are in turn defined circu-
larly in terms of each other. Thus each subclass of Magni-
tude must redefine at least one of these messages.

< Relational less than test. Returns a
boolean.

<= Relational less than or equal test.

= Relational equal test. Note that this
differs from ==, which is an object equality
test.

~= Relational not equal test, opposite of =.

>= Relational greater than or equal test.

> Relational greater than test.

between:and: Relational test for inclusion.

max: Return the maximum of the receiver and argu-
ment value.

small 38 / 69

min: Return the minimum of the receiver and argu-
ment value.

Examples

Printed result

$A max: $a $a
4 between: 3.1 and: (17/3) True

1.47 Class Char

Object
Magnitude

Char

This class defines protocol for objects with character
values. Characters possess an ordering given by the under-
lying representation, however arithmetic is not defined for
character values. Characters are written literally by
preceding the character desired with a dollar sign, for
example: $a $B $$.

Responds to

== Object equality test. Two instances of the
same character always test equal.

asciiValue Return an Integer representing the ascii
value of the receiver.

asLowercase If the receiver is an uppercase letter
returns the same letter in lowercase, other-
wise returns the receiver.

asUppercase If the receiver is a lowercase letter returns
the same letter in uppercase, otherwise
returns the receiver.

asString Return a length one string containing the
receiver. Does not contain leading dollar
sign, compare to printString.

digitValue If the receiver represents a number (for
example $9) return the digit value of the
number. If the receiver is an uppercase
letter (for example $B) return the position
of the number in the uppercase letters + 10,
($B returns 11, for example). If the
receiver is neither a digit nor an uppercase
letter an error is given and nil returned.

isAlphaNumericRespond true if receiver is either digit or
letter, false otherwise.

small 39 / 69

isDigit Respond true if receiver is a digit, false
otherwise.

isLetter Respond true if receiver is a letter, false
otherwise.

isLowercase Respond true if receiver is a lowercase
letter, false otherwise.

isSeparator Respond true if receiver is a space, tab or
newline, false otherwise.

isUppercase Respond true if receiver is an uppercase
letter, false otherwise.

isVowel Respond true if receiver is $a, $e, $i, $o or
$u, in either upper or lower case.

printString Respond with a string representation of the
character value. Includes leading dollar
sign, compare to asString, which does not
include $.

Examples

Printed result

$A < $0 False
$A asciiValue 65
$A asString A
$A printString $A
$A isVowel True
$A digitValue 10

1.48 Class Number

Object
Magnitude

Number

The class Number is an abstract superclass for Integer
and Float. Instances of Number cannot be created directly.
Relational messages and many arithmetic messages are rede-
fined in each subclass for arguments of the appropriate
type. In general, an error message is given and nil
returned for illegal arguments.

Responds To

+ Mixed type addition.

- Mixed type subtraction.

* Mixed type multiplication

small 40 / 69

/ Mixed type division.

^ Exponentiation, same as raisedTo: .

@ Construct a point with coordinates being the
receiver and the argument.

abs Absolute value of the receiver.

exp e raised to the power.

gamma Return the gamma function (generalized fac-
torial) evaluated at the receiver.

ln Natural logarithm of the receiver.

log: Logarithm in the given base.

negated The arithmetic inverse of the receiver.

negative True if the receiver is negative.

pi Return the approximate value of the receiver
multiplied by (3.1415926...).

positive True if the receiver is positive.

radians Argument converted into radians.

raisedTo: The receiver raised to the argument value.

reciprocal The arithmetic reciprocal of the receiver.

roundTo: The receiver rounded to units of the argu-
ment.

sign Return -1, 0 or 1 depending upon whether the
receiver is negative, zero or positive.

sqrt Square root. nil if receiver is less than
zero.

squared Return the receiver multiplied by itself.

strictlyPositive
True if the receiver is greater than zero.

to: Interval from receiver to argument value with
step of 1.

to:by: Interval from receiver to argument in given
steps.

truncatedTo: The receiver truncated to units of the argu-
ment.

small 41 / 69

Examples

Printed result

3 < 4.1 True
3 + 4.1 7.1
3.14159 exp 23.1406
9 gamma 40320
5 reciprocal 0.2
0.5 radians 0.5 radians
13 roundTo: 5 15
13 truncateTo: 5 10

1.49 Class Integer

Object
Magnitude

Number
Integer

The class Integer provides protocol for objects with
integer values.

Responds To

== Object equality test. Two integers
representing the same value are considered to
be the same object.

// Integer quotient, truncated towards negative
infinity (compare to quo:).

\ Integer remainder, truncated towards negative
infinity (compare to rem:).

allMask: Argument must be Integer. Treating receiver
and argument as bit strings, return true if
all bits with 1 value in argument correspond
to bits with 1 values in the receiver.

anyMask: Argument must be Integer. Treating receiver
and argument as bit strings, return true if
any bit with 1 value in argument corresponds
to a bit with 1 value in the receiver.

asCharacter Return the Char with the same underlying
ascii representation as the low order eight
bits of the receiver.

asFloat Floating point value with same magnitude as
receiver.

bitAnd: Argument must be Integer. Treating the
receiver and argument as bit strings, return
logical and of values.

small 42 / 69

bitAt: Argument must be Integer greater than 0 and
less than underlying word size. Treating
receiver as a bit string, return the bit
value at the given position, numbering from
low order (or rightmost) position.

bitInvert Return the receiver with all bit positions
inverted.

bitOr: Return logical or of values.

bitShift: Treating the receiver as a bit string, shift
bit values by amount indicated in argument.
Negative values shift right, positive left.

bitXor: Return logical exclusive-or of values.

even Return true if receiver is even, false other-
wise.

factorial Return the factorial of the receiver. Return
as Float for large numbers.

gcd: Argument must be Integer. Return the
greatest common divisor of the receiver and
argument.

highBit Return the location of the highest 1 bit in
the receiver. Return nil for receiver zero.

lcm: Argument must be Integer. Return least com-
mon multiple of receiver and argument.

noMask: Argument must be Integer. Treating receiver
and argument as bit strings, return true if
no 1 bit in the argument corresponds to a 1
bit in the receiver.

odd Return true if receiver is odd, false other-
wise.

quo: Return quotient of receiver divided by argu-
ment.

radix: Return a string representation of the
receiver value, printed in the base
represented by the argument. Argument value
must be less than 36.

rem: Remainder after receiver is divided by argu-
ment value.

timesRepeat: Repeat argument block the number of times
given by the receiver.

Examples

small 43 / 69

Printed result

5 + 4 7
5 allMask: 4 True
4 allMask: 5 False
5 anyMask: 4 True
5 bitAnd: 3 1
5 bitOr: 3 7
5 bitInvert -6
254 radix: 16 16rFE
-5 // 4 -2
-5 quo: 4 -1
-5 \ 4 1
-5 rem: 4 -1
8 factorial 40320

1.50 Class Float

Object
Magnitude

Number
Float

The class Float provides protocol for objects with
floating point values.

Responds To

== Object equality test. Return true if the
receiver and argument represent the same
floating point value.

^ Floating exponentiation.

arcCos Return a Radian representing the arcCos of
the receiver.

arcSin Return a Radian representing the arcSin of
the receiver.

arcTan Return a Radian representing the arcTan of
the receiver.

asFloat Return the receiver.

ceiling Return the Integer ceiling of the receiver.

coerce: Coerce the argument into being type Float.

exp Return e raised to the receiver value.

floor Return the Integer floor of the receiver.

fractionPart Return the fractional part of the receiver.

small 44 / 69

gamma Return the value of the gamma function
applied to the receiver value.

integerPart Return the integer part of the receiver.

ln Return the natural log of the receiver.

radix: Return a string containing the printable
representation of the receiver in the given
radix. Argument must be an Integer less than
36.

rounded Return the receiver rounded to the nearest
integer.

sqrt Return the square root of the receiver.

truncated Return the receiver truncated to the nearest
integer.

Examples

Printed result

4.2 * 3 12.6
2.1 ^ 4 19.4481
2.1 raisedTo: 4 19.4481
0.5 arcSin 0.523599 radians
2.1 reciprocal 0.47619
4.3 sqrt 2.07364

1.51 Class Radian

Object
Magnitude

Radian

The class Radian is used to represent radians. Radians
are a unit of measurement, independent of other numbers.
Only radians will responds to the trigonometric functions
such as sin and cos. Numbers can be converted into radians
by passing them the message radians. Similarly, radians can
be converted into numbers by sending them the message
asFloat. Notice that only a limited range of arithmetic
operations are permitted on Radians. Radians are normalized
to be between 0 and 2PI.

Responds to

+ Argument must be a Radian. Add the two radi-
ans together and return the normalized
result.

- Argument must be a Radian. Subtract the

small 45 / 69

argument from the receiver and return the
normalized result.

* Argument must be a Number. Multiply the
receiver by the argument amount and return
the normalized result.

/ Argument must be a Number. Divide the
receiver by the argument amount and return
the normalized result.

asFloat Return the receiver as a floating point
number.

cos Return a floating point number representing
the cosine of the receiver.

sin Return a floating point number representing
the sine of the receiver.

tan Return a floating point number representing
the tangent of the receiver.

Examples

Printed result

0.5236 radians sin 0.5
0.5236 radians cos 0.866025
0.5236 radians tan 0.577352
0.5 arcSin asFloat 0.523599

1.52 Class Point

Object
Magnitude

Point

Points are used to represent pairs of quantities, such
as coordinate pairs.

Responds To

< True if both values of the receiver are less
than the corresponding values in the argu-
ment.

<= True if the first value is less than or equal
to the corresponding value in the argument,
and the second value is less than the
corresponding value in the argument.

>= True if both values of the receiver are
greater than or equal to the corresponding
values in the argument.

small 46 / 69

* Return a new point with coordinates multi-
plied by the argument value.

/ Return a new point with coordinates divided
by the argument value.

// Return a new point with coordinates divided
by the argument value.

+ Return a new point with coordinates offset by
the corresponding values in the argument.

abs Return a new point with coordinates having
the absolute value of the receiver.

dist: Return the Euclidean distance between the
receiver and the argument point.

max: The argument must be a Point. Return the
lower right corner of the rectangle defined
by the receiver and the argument.

min: The argument must be a Point. Return the
upper left corner of the rectangle defined by
the receiver and the argument.

transpose Return a new point with coordinates being the
transpose of the receiver.

x Return the first coordinate of the receiver.

x: Set the first coordinate of the receiver.

x:y: Sets both coordinates of the receiver.

y Return the second coordinate of the receiver.

y: Set the second coordinate of the receiver.

Examples

Printed result

(10@12) < (11@14) True
(10@12) < (11@11) False
(10@12) max: (11@11) 11@12
(10@12) min: (11@11) 10@11
(10@12) dist: (11@14) 2.23607
(10@12) transpose 12@10

1.53 Class Random

Object
Random

small 47 / 69

The class Random provides protocol for random number
generation. Sending the message next to an instance of Ran-
dom results in a Float between 0.0 and 1.0, randomly distri-
buted. By default, the pseudo random sequence is the same
for each object in class Random. This can be altered using
the message randomize.

Responds To

between:and: Return a random number uniformly distributed
between the two arguments.

first Return a random number between 0.0 and 1.0.
This message merely provides consistency with
protocol for other sequences, such as Arrays
or Intervals.

next Return a random number between 0.0 and 1.0.

next: Return an Array containing the next n random
numbers, where n is the argument value.

randInteger: The argument must be an integer. Return a
random integer between 1 and the value given.

randomize Change the pseudo-random number generator
seed by a time dependent value.

Examples

Printed result

i <- Random new
i next 0.759
i next 0.157
i next: 3 #(0.408 0.278 0.547)
i randInteger: 12 5
i between: 4 and: 17.5 10.0

1.54 Class Collection

Object
Collection

The class Collection provides protocol for groups of
objects, such as Arrays or Sets. The different forms of col-
lections are distinguished by several characteristics, among
them whether the size of the collection is fixed or
unbounded, the presence or absence of an ordering, and their
insertion or access method. For example, an Array is a col-
lection with a fixed size and ordering, indexed by integer
keys. A Dictionary, on the other hand, has no fixed size or
ordering, and can be indexed by arbitrary elements.
Nevertheless, Arrays and Dictionarys share many features in

small 48 / 69

common, such as their access method (_at: and at:put:), and
the ability to respond to collect:, select:, and many other
messages.

The table below lists some of the characteristics of
several forms of collections:

Name Creation Size Ordered? Insertion Access
Method fixed? method method

Bag/Set new no no add: includes:

Dictionary new no no at:put: at:

Interval n to: m yes yes none at:

List new no yes addFirst: first
addLast: last

Array new: yes yes at:put: at:

String new: yes yes at:put: at:

The list below shows messages that are shared in common
by all collections.

Responds to

addAll: The argument must be a Collection. Add all
the elements of the argument collection to
the receiver collection.

asArray Return a new collection of type Array con-
taining the elements from the receiver col-
lection. If the receiver was ordered, the
elements will be in the same order in the new
collection, otherwise the elements will be in
an arbitrary order.

asBag Return a new collection of type Bag contain-
ing the elements from the receiver collec-
tion.

asList Return a new collection of type List contain-
ing the elements from the receiver collec-
tion. If the receiver was ordered, the ele-
ments will be in the same order in the new
collection, otherwise the elements will be in
an arbitrary order.

asSet Return a new collection of type Set contain-

small 49 / 69

ing the elements from the receiver collec-
tion.

asString Return a new collection of type String con-
taining the elements from the receiver col-
lection. The elements to be included must
all be of type Character. If the receiver
was ordered, the elements will be in the same
order in the new collection, otherwise the
elements will be listed in an arbitrary
order.

coerce: The argument must be a collection. Return a
collection, of the same type as the receiver,
containing elements from the argument collec-
tion. This message is redefined in most
subclasses of collection.

collect: The argument must be a one argument block.
Return a new collection, like the receiver,
containing the result of evaluating the argu-
ment block on each element of the receiver
collection.

detect: The argument must be a one argument block.
Return the first element in the receiver col-
lection for which the argument block evalu-
ates true. Report an error and return nil if
no such element exists. Note that in unor-
dered collections (such as Bags or Diction-
arys) the first element to be encountered
that will satisfy the condition may not be
easily predictable.

detect:ifAbsent:
Return the first element in the receiver col-
lection for which the first argument block
evaluates true. Return the result of
evaluating the second argument if no such
element exists.

do: The argument must be a one argument block.
Evaluate the argument block on each element
in the receiver collection.

includes: Return true if the receiver collection con-
tains the argument.

inject:into: The first argument must be a value, the
second a two argument block. The second
argument is evaluated once for each element
in the receiver collection, passing as argu-
ments the result of the previous evaluation
(starting with the first argument) and the
element. The value returned is the final
value generated.

small 50 / 69

isEmpty Return true if the receiver collection con-
tains no elements.

occurrencesOf:Return the number of times the argument
occurs in the receiver collection.

remove: Remove the argument from the receiver collec-
tion. Report an error if the element is not
contained in the receiver collection.

remove:ifAbsent:
Remove the first argument from the receiver
collection. Evaluate the second argument if
not present.

reject: The argument must be a one argument block.
Return a new collection like the receiver
containing all elements for which the argu-
ment block returns false.

select: The argument must be a one argument block.
Return a new collection like the receiver
containing all elements for which the argu-
ment block returns true.

size Return the number of elements in the receiver
collection.

Examples

Printed result

i <- ’abacadabra’
i size 10
i asArray #($a $b $a $c $a $d $a $b $r $a)
i asBag Bag ($a $a $a $a $a $r $b $b $c $d)
i asSet Set ($a $r $b $c $d)
i occurrencesOf: $a 5
i reject: [:x | x isVowel] bcdbr

1.55 Bag/Set

Object
Collection

Bag/Set

Bags and Sets are each unordered collections of ele-
ments. Elements in the collections do not have keys, but are
added and removed directly. The difference between a Bag
and a Set is that each element can occur any number of times
in a Bag, whereas only one copy is inserted into a Set.

Responds to

small 51 / 69

add: Add the indicated element to the receiver
collection.

add:withOccurences:
(Bag only) Add the indicated element to the
receiver Bag the given number of times.

first Return the first element from the receiver
collection. As the collection is unordered,
the first element depends upon certain values
in the internal representation, and is not
guaranteed to be any specific element in the
collection.

next Return the next element in the collection.
In conjunction with first, this can be used
to access each element of the collection in
turn.

Examples

Printed result

i <- (1 to: 6) asBag Bag (1 2 3 4 5 6)
i size 6
i select: [:x | (x \ 2) strictlyPositive]Bag (1 3 5)
i collect: [:x | x \ 3] Bag (0 0 1 1 2 2)
j <- (i collect: [:x | x \ 3]) asSet Set (0 1 2)
j size 3

Note: Since Bags and Sets are unordered, there is no way to
establish a mapping between the elements of the Bag i in the
example above and the corresponding elements in the collec-
tion that resulted from the message collect: [:x | x \ 3].

1.56 KeyedCollection

Object
Collection

KeyedCollection

The class KeyedCollection provides protocol for collec-
tions with keys, such as Dictionarys and Arrays. Since each
entry in the collection has both a key and value, the method
add: is no longer appropriate. Instead, the method at:put:,
which provides both a key and a value, must be used.

Responds to

asDictionary Return a new collection of type Dictionary
containing the elements from the receiver
collection.

at: Return the item in the receiver collection

small 52 / 69

whose key matches the argument. Produces and
error message, and returns nil, if no item is
currently in the receiver collection under
the given key.

at:ifAbsent: Return the element stored in the dictionary
under the key given by the first argument.
Return the result of evaluating the second
argument if no such element exists.

atAll:put: The first argument must be a collection con-
taining keys valid for the receiver. At each
location given by a key in the first argument
place the second argument.

binaryDo: The argument must be a two argument block.
This message is similar to do:, however both
the key and the element value are passed as
argument to the block.

includesKey: Return true if the indicated key is valid for
the receiver collection.

indexOf: Return the key value of the first element in
the receiver collection matching the argu-
ment. Produces an error message if no such
element exists. Note that, as with the mes-
sage detect:, in unordered collections the
first element may not be related in any way
to the order in which elements were placed
into the collection, but is rather implemen-
tation dependent.

indexOf:ifAbsent:
Return the key value of the first element in
the receiver collection matching the argu-
ment. Return the result of evaluating the
second argument if no such element exists.

keys Return a Set containing the keys for the
receiver collection.

keysDo: The argument must be a one argument block.
Similar to do:, except that the values passed
to the block are the keys of the receiver
collection.

keysSelect: Similar to select, except that the selection
is made on the basis of keys instead of
values.

removeKey: Remove the object with the given key from the
receiver collection. Print an error message,
and return nil, if no such object exists.
Return the value of the deleted item.

removeKey:ifAbsent:

small 53 / 69

Remove the object with the given key from the
receiver collection. Return the result of
evaluating the second argument if no such
object exists.

values Return a Bag containing the values from the
receiver collection.

Examples

Printed result

i <- ’abacadabra’
i atAll: (1 to: 7 by: 2) put: $e ebecedebra
i indexOf: $r 9
i atAll: i keys put: $z zzzzzzzzzz
i keys Set (1 2 3 4 5 6 7 8 9 10)
i values Bag ($z $z $z $z $z $z $z $z $z $z)
#(how odd) asDictionary Dictionary (1 @ #how 2 @ odd)

1.57 Dictionary

Object
Collection

KeyedCollection
Dictionary

A Dictionary is an unordered collection of elements, as
are Bags and Sets. However, unlike these collections, ele-
ments inserted and removed from a Dictionary must reference
an explicit key. Both the key and value portions of an ele-
ment can be any object, although commonly the keys are
instances of Symbol or Number.

Responds to

at:put: Place the second argument into the receiver
collection under the key given by the first
argument.

currentKey Return the key of the last element yielded in
response to a first or next request.

first Return the first element of the receiver col-
lection. Return nil if the receiver collec-
tion is empty.

next Return the next element of the receiver col-
lection, or nil if no such element exists.

Examples

Printed result

i <- Dictionary new

small 54 / 69

i at: #abc put: #def
i at: #pqr put: #tus
i at: #xyz put: #wrt
i print Dictionary (#abc @ #def #pqr @ #tus #xyz @ #wrt)
i size 3
i at: #pqr #tus
i indexOf: #tus #pqr
i keys Set (#abc #pqr #xyz)
i values Bag (#wrt #def # tus)
i collect: [:x | x asString at: 2]Dictionary (#abc @ $e #pqr @ $u #xyz @ $r)

1.58 Smalltalk

Object
Collection

KeyedCollection
Dictionary

Smalltalk

The class Smalltalk provides protocol for the pseudo
variable smalltalk. Since it is a subclass of Dictionary,
this variable can be used to store information, and thus
provide a means of communication between objects. Other
messages modify various parameters used by the Little
Smalltalk system.

Responds To

date Return the current date and time as a string.

display Set execution display to display the result
of every expression typed, but not for
assignments. Note that the display behavior
can also be modified using the -d argument on
the command line.

displayAssignSet execution display to display the result
of every expression typed, including assign-
ment statements.

doPrimitive:withArguments:
Execute the indicated primitive with argu-
ments given by the second array. A few prim-
itives (such as those dealing with process
management) cannot be executed in this
manner.

noDisplay Turn off execution display - no results will
be displayed unless explicitly requested by
the user.

perform:withArguments:
Send indicated message to the receiver, using
the arguments given. The first value in the
argument array is taken to be the receiver of

small 55 / 69

the message. Unpredictable results if the
number of arguments is not appropriate for
the given message.

sh: The argument, which must be a string, is exe-
cuted as a Unix command by the shell. The
value returned is the termination status of
the shell.

time: The argument must be a block. The block is
executed, and the number of seconds elapsed
during execution returned. Time is only
accurate to within about one second.

Examples

Printed result

smalltalk date Fri Apr 12 16:15:42 1985
smalltalk perform: #+ withArguments: #(2 5)7
smalltalk doPrimitive: 10 withArguments: #(2 5)7

1.59 SequenceableCollection

Object
Collection

KeyedCollection
SequenceableCollection

The class SequenceableCollection contains protocol for
collections that have a definite sequential ordering and are
indexed by integer keys. Since there is a fixed order for
elements, it is possible to refer to the last element in a
SequenceableCollection.

Responds to

, Appends the argument collection to the
receiver collection, returning a new collec-
tion of the same type as the receiver.

copyFrom:to: Return a new collection, like the receiver,
containing the designated subportion of the
receiver collection.

copyWith: Return a new collection, like the receiver,
with the argument added to the end.

copyWithout: Return a new collection, like the receiver,
with all occurrences of the argument removed.

equals:startingAt:
The first argument must be a SequenceableCol-
lection. Return true if each element of the
receiver collection is equal to the

small 56 / 69

corresponding element in the argument offset
by the amount given in the second argument.

findFirst: Find the key for the first element whose
value satisfies the argument block. Produce
an error message if no such element exists.

findFirst:ifAbsent:
Both arguments must be blocks. Find the key
for the first element whose value satisfies
the first argument block. If no such element
exists return the value of the second argu-
ment.

findLast: Find the key for the last element whose value
satisfies the argument block. Produce an
error message if no such element exists.

findLast:ifAbsent:
Both arguments must be blocks. Find the key
for the last element whose value satisfies
the first argument block. If no such element
exists return the value of the second
argument block.

firstKey Return the first key valid for the receiver
collection.

indexOfSubCollection:startingAt:
Starting at the position given by the second
argument, find the next block of elements in
the receiver collection which match the col-
lection given by the first argument, and
return the index for the start of that block.
Produce an error message if no such position
exists.

indexOfSubCollection:startingAt:ifAbsent:
Similar to indexOfSubCollection:startingAt:,
except that the result of the exception block
is produced if no position exists matching
the pattern.

last Return the last element in the receiver col-
lection.

lastKey Return the last key valid for the receiver
collection.

replaceFrom:to:with:
Replace the elements in the receiver collec-
tion in the positions indicated by the first
two arguments with values taken from the col-
lection given by the third argument.

replaceFrom:to:with:startingAt:
Replace the elements in the receiver collec-

small 57 / 69

tion in the positions indicated by the first
two arguments with values taken from the col-
lection given in the third argument, starting
at the position given by the fourth argument.

reversed Return a collection, like the receiver, with
elements reversed.

reverseDo: Similar to do:, except that the items are
presented in reverse order.

sort Return a collection, like the receiver, with
the elements sorted using the comparison <=.
Elements must be able to respond to the
binary message <=.

sort: The argument must be a two argument block
which yields a boolean. Return a collection,
like the receiver, sorted using the argument
to compare elements for the purpose of
ordering.

with:do: The second argument must be a two argument
block. Present one element from the receiver
collection and from the collection given by
the first argument in turn to the second
argument block. An error message is given if
the collections do not have the same number
of elements.

Examples

Printed result

i <- ’abacadabra’
i copyFrom: 4 to: 8 cadab
i copyWith: $z abacadabraz
i copyWithout: $a bcdbr
i findFirst: [:x | x > $m] 9
i indexOfSubCollection: ’dab’ startingAt: 16
i reversed arbadacaba
i , i reversed abacadabraarbadacaba
i sort: [:x :y | x >= y] rdcbbaaaaa

1.60 Interval

Object
Collection

KeyedCollection
SequenceableCollection

Interval

The class Interval represents a sequence of numbers in
an arithmetic sequence, either ascending or descending.
Instances of Interval are created by numbers in response to

small 58 / 69

the message to: or to:by:. In conjunction with the message
do:, Intervals create a control structure similar to do or
for loops in Algol like languages. For example:

(1 to: 10) do: [:x | x print]

will print the numbers 1 through 10. Although they are a
collection, Intervals cannot be added to. They can, how-
ever, be accessed randomly using the message at:.

Responds to

first Produce the first element from the interval.
In conjunction with last, this message may be
used to produce each element from the inter-
val in turn. Note that Intervals also
respond to the message at:, which can be used
to produce elements in an arbitrary order.

from:to:by: Initialize the upper and lower bounds and the
step size for the receiver. (This is used
principally internally by the method for
number to create new Intervals).

next Produce the next element from the interval.

size Return the number of elements that will be
generated in producing the interval.

Examples

Printed result

(7 to: 13 by: 3) asArray #(7 10 13)
(7 to: 13 by: 3) at: 2 10
(1 to: 10) inject: 0 into: [:x :y | x + y]55
(7 to: 13) copyFrom: 2 to: 5 #(8 9 10 11)
(3 to: 5) copyWith: 13 #(3 4 5 13)
(3 to: 5) copyWithout: 4 #(3 5)
(2 to: 4) equals: (1 to: 4) startingAt: 2True

1.61 List

Object
Collection

KeyedCollection
SequenceableCollection

List

Lists represent collections with a fixed order, but
indefinite size. No keys are used, and elements are added
or removed from one end of the other. Used in this way,
Lists can perform as stacks or as queues. The table below

small 59 / 69

illustrates how stack and queue operations can be imple-
mented in terms of messages to instances of List.

stack operations queue operations

push addLast: add addLast:
pop removeLast first in queue first
top last remove first in queue removeFirst
test empty isEmpty test empty isEmpty

Responds to

add: Add the element to the beginning of the
receiver collection. This is the same as
addFirst:.

addAllFirst: The argument must be a SequenceableCollec-
tion. The elements of the argument are
added, in order, to the front of the receiver
collection.

addAllLast: The argument must be a SequenceableCollec-
tion. The elements of the argument are
added, in order, to the end of the receiver
collection.

addFirst: The argument is added to the front of the
receiver collection.

addLast: The argument is added to the back of the
receiver collection.

removeFirst Remove the first element from the receiver
collection, returning the removed value.

removeLast Remove the last element from the receiver
collection, returning the removed value.

Examples

Printed result

i <- List new
i addFirst: 2 / 3 List (0.6666)
i add: $A
i addAllLast: (12 to: 14 by: 2)
i print List (0.6666 $A 12 14)
i first 0.6666
i removeLast 14
i print List (0.6666 $A 12)

1.62 Semaphore

small 60 / 69

Object
Collection

KeyedCollection
SequenceableCollection

List
Semaphore

Semaphores are used to synchronize concurrently running
Processes.

Responds To

new: If created using new, a Semaphore starts out
with zero excess signals. Alternatively, a
Semaphore can be created with an arbitrary
number of excess signals by giving it an
argument to new:.

signal If there is a process blocked on the sema-
phore is it scheduled for execution, other-
wise the number of excess signals is incre-
mented by one.

wait If there are excess signals associated with
the semaphore the number of signals is decre-
mented by one, otherwise the current process
is placed on the semaphore queue.

1.63 File

Object
Collection

KeyedCollection
SequenceableCollection

File

A File is a type of collection where the elements of
the collection are stored on an external medium, typically a
disk. For this reason, although most operations on collec-
tions are defined for files, many can be quite slow in exe-
cution. A file can be opened on one of three modes: In
character mode every read returns a single character from
the file. In integer mode every read returns a single word,
as an integer value. In string mode every read returns a
single line, as a String. For writing, character and string
modes will write the string representation of the argument,
while integer mode must write only a single integer.

Responds To

at: Return the object stored at the indicated
position. Position is given as a character
count from the start of the file.

small 61 / 69

at:put: Place the object at the indicated position in
the file. Position is given as a character
count from the start of the file.

characterModeSet the mode of the receiver file to charac-
ter.

currentKey Return the current position in the file, as a
character count from the start of the file.

integerMode Set the mode of the receiver file to integer.

open: Open the indicated file for reading. The
argument must be a String.

open:for: The for: argument must be one of ’r’, ’w’ or
’r+’ (see fopen(3) in the Unix programmers
manual). Open the file in the indicated
mode.

read Return the next object from the file.

size Return the size of the file, in character
counts.

stringMode Set the mode of the receiver file to string.

write: Write the argument into the file.

1.64 ArrayedCollection

Object
Collection

KeyedCollection
SequenceableCollection

ArrayedCollection

The class ArrayedCollection provides protocol for col-
lections with a Fixed size and integer keys. Unlike other
collections, which are created using the message new,
instances of ArrayedCollection must be created using the one
argument message new:. The argument given with this message
must be a positive integer, representing the size of the
collection to be created. In addition to the protocol
shown, many of the methods inherited from superclasses are
redefined in this class.

Responds to

= The argument must also be an Array. Test
whether the receiver and the argument have
equal elements listed in the same order.

at:ifAbsent: Return the element stored with the given key.
Return the result of evaluating the second

small 62 / 69

argument if the key is not valid for the
receiver collection.

padTo: Return an array like the received that is at
least as long as the argument value. Returns
the receiver if it is already longer than the
argument.

Examples

Printed result

’small’ = ’small’ True
’small’ = ’SMALL’ False
’small’ asArray #($s $m $a $l $l)
’small’ asArray = ’small’ True
#(1 2 3) padTo: 5 #(1 2 3 nil nil)
#(1 2 3) padTo: 2 #(1 2 3)

1.65 Array

Object
Collection

KeyedCollection
SequenceableCollection

ArrayedCollection
Array

Instances of the class Array are perhaps the most com-
monly used data structure in Smalltalk programs. Arrays are
represented textually by a pound sign preceding the list of
array elements.

Responds to

at: Return the item stored in the position given
by the argument. An error message is pro-
duced, and nil returned, if the argument is
not a valid key.

at:put: Store the second argument in the position
given by the first argument. An error mes-
sage is produced, and nil returned, if the
argument is not a valid key.

grow: Return a new array one element larger than
the receiver, with the argument value
attached to the end. This is a slightly more
efficient command than copyWith:, although
the effect is the same.

Examples

Printed result

small 63 / 69

i <- #(110 101 97)
i size 3
i <- i grow: 116 #(110 101 97 116)
i <- i collect: [:x | x asCharacter] #(#n #e #a #t)
i asString neat

1.66 ByteArray

Object
Collection

KeyedCollection
SequenceableCollection

ArrayedCollection
ByteArray

A ByteArray is a special form of array in which the
elements must be numbers in the range 0-255. Instances of
ByteArray are given a very compact encoding, and are used
extensively internally in the Little Smalltalk system. A
ByteArray can be represented textually by a pound sign
preceding the list of array elements surrounded by a pair of
square braces.

Responds to

at: Return the item stored in the position given
by the argument. An error message is pro-
duced, and nil returned, if the argument is
not a valid key.

at:put: Store the second argument in the position
given by the first argument. An error mes-
sage is produced, and nil returned, if the
argument is not a valid key.

Examples

Printed result

i <- #[110 101 97]
i size 3
i <- i copyWith: 116 #[110 101 97 116]
i <- i asArray collect: [:x | x asCharacter]#(#n #e #a #t)
i asString neat

1.67 String

Object
Collection

KeyedCollection
SequenceableCollection

ArrayedCollection

small 64 / 69

String

Instances of the class String are similar to Arrays,
except that the individual elements must be Character.
Strings are represented literally by placing single quote
marks around the characters making up the string. Strings
also differ from Arrays in that Strings possess an ordering,
given by the underlying ascii sequence.

Responds to

, Concatenates the argument to the receiver
string, producing a new string. If the argu-
ment is not a String it is first converted
using printString.

< The argument must be a String. Test if the
receiver is lexically less than the argument.
For the purposes of comparison case differ-
ences are ignored.

<= Test if the receiver is lexically less than
or equal to the argument.

>= Test if the receiver is lexically greater
than or equal to the argument.

> Test if the receiver is lexically greater
than the argument.

asSymbol Return a Symbol with characters given by the
receiver string.

at: Return the character stored at the position
given by the argument. Produce and error mes-
sage, and return nil, if the argument does
not represent a valid key.

at:put: Store the character given by second argument
at the location given by the first argument.
Produce an error message, and return nil, if
either argument is invalid.

copyFrom:length:
Return a substring of the receiver. The sub-
string is taken from the indicated starting
position in the receiver and extends for the
given length. Produce an error message, and
return nil, if the given positions are not
legal.

copyFrom:to: Return a substring of the receiver. The sub-
string is taken from the indicated positions.
Produce an error message, and return nil, if
the given positions are not legal.

printAt: The argument must be a Point which describes

small 65 / 69

a location on the terminal screen. The
string is printed at the specified location.

size Return the number of characters stored in the
string.

sameAs: Return true if the receiver and argument
string match with the exception of case
differences. Note that the boolean message =
, inherited from ArrayedCollection, can be
used to see if two strings are the same
including case differences.

Examples

Printed result

’example’ at: 2 $x
’bead’ at: 1 put: $r read
’small’ > ’BIG’ True
’small’ sameAs: ’SMALL’ True
’tary’ sort arty
’Rats live on no evil Star’ reversed ratS live on no evil staR

1.68 Block

Object
Block

Although it is easy for the programmer to think of
blocks as a syntactic construct, or a control structure,
they are actually objects, and share attributes of all other
objects in the Smalltalk system, such as the ability to
respond to messages.

Responds to

fork Start the block executing as a Process. The
value nil is immediately returned, and the
Process created from the block is scheduled
to run in parallel with the current process.

forkWith: Similar to fork, except that the array is
passed as arguments to the receiver block
prior to scheduling for execution.

newProcess A new Process is created for the block, but
is not scheduled for execution.

newProcessWith:
Similar to newProcess, except that the array
is passed as arguments to the receiver block
prior to it being made into a process.

value Evaluates the receiver block. Produces an

small 66 / 69

error message, and returns nil, if the
receiver block required arguments. Return
the value yielded by the block.

value: Evaluates the receiver block. Produces an
error message, and returns nil, if the
receiver block did not require a single argu-
ment. Return the value yielded by the block.

value:value: Two argument block evaluation.

value:value:value:
Three argument block evaluation.

value:value:value:value:
Four argument block evaluation.

value:value:value:value:value:
Five argument block evaluation.

whileTrue: The receiver block is repeatedly evaluated.
While it evaluates to true, the argument
block is also evaluated. Return nil when the
receiver block no longer evaluates to true.

whileTrue The receiver block is repeatedly evaluated
until it returns a value that is not true.

whileFalse: The receiver block is repeatedly evaluated.
While it evaluates to false, the argument
block is also evaluated. Return nil when the
receiver block no longer evaluates to false.

whileFalse The receiver block is repeatedly evaluated
until it returns a value that is not false.

Examples

Printed result

[’block indeed’] value block indeed
[:x :y | x + y + 3] value: 5 value: 7 15

1.69 Class

Object
Class

The class Class provides protocol for manipulating
class instances. An instance of class Class is generated
for each class in the Smalltalk system. New instances of
this class are then formed by sending messages to the class
instance.

Responds to

small 67 / 69

deepCopy: The argument must be an instance of the
receiver class. A deepCopy of the argument
is returned.

edit The user is placed into a editor editing the
file from which the class description was
originally obtained. When the editor ter-
minates, the class description will be
reparsed and will override the previous
description. See also view, listedit, and
listview (below).

list Lists all subclasses of the given class
recursively. In particular, Object list will
list the names of all the classes in the sys-
tem.

listedit Similar to list (above) but displays the
results in a scrollable GUI window. Clicking
on an entry in the list then invokes edit (above)
on the selected entry.

listview Similar to listedit (above) but invokes view
(below) for the selected entry, rather than
edit.

new A new instance of the receiver class is
returned. If the methods for the receiver
contain protocol for new, the new instance
will first be passed this message.

new: A new instance of the receiver class is
returned. If the methods for the receiver
contain protocol for new:, the new instance
will first be passed this message.

respondsTo List all the messages that the current class
will respond to.

respondsTo: The argument must be a Symbol. Return true
if the receiver class, or any of its superc-
lasses, contains a method for the indicated
message. Return false otherwise.

shallowCopy: The argument must be an instance of the
receiver class. A shallowCopy of the argu-
ment is returned.

superClass Return the superclass of the receiver class.

variables Return an array containing the names of the
instance variables used in the receiver
class.

view Place the user into an editor viewing the
class description from which the class was

small 68 / 69

created. Changes made to the file will not,
however, affect the current class representa-
tion.

Examples

Printed result

Array new: 3 #(nil nil nil)
Bag respondsTo: #add: True
SequenceableCollection superClass KeyedCollection

1.70 Process

Object
Process

Processes are created by the system, or by passing the
message newProcess or fork to a block; they cannot be
created directly by the user.

Responds To

block The receiver process is marked as being
blocked. This is usually the result of a
semaphore wait. Blocked processes are not
executed.

resume If the receiver process has been suspended,
it is rescheduled for execution.

suspend If the receiver process is scheduled for exe-
cution, it is marked as suspended. Suspended
processes are not executed.

state The current state of the receiver process is
returned as a Symbol.

terminate The receiver process is terminated. Unlike a
blocked or suspended process, a terminated
process cannot be restarted.

unblock If the receiver process is currently blocked,
it is scheduled for execution.

yield Returns nil. As a side effect, however, if
there are pending processes the current pro-
cess is placed back on the process queue and
another process started.

1.71 Syntax Example

small 69 / 69

The complete syntax accepted by Little Smalltalk is ←↩
described in

A Little Smalltalk
, as amended by the

incompatibilities
introduced by version 3.

Look in the *.st modules for examples.

1.72 References

References

Budd, T. [1987] A Little Smalltalk. Reading, Mass.
Addison-Wesley
(A Little Smalltalk)

Goldberg, A. and Robson, D. [1983] Smalltalk-80: The Language
and Its Implementation. Reading, Mass. Addison-Wesley.
(Smalltalk blue)

Goldberg, A. [1983] Smalltalk-80: The Interactive
Programming Environment. Reading, Mass. Addison-Wesley.
(Smalltalk orange)

	small
	Amiga Little Smalltalk
	Introduction
	Acknowledgements
	Distribution
	Getting Started
	Stdin/Stdout Interface
	Windowing Interface
	Exploring and Creating
	New Methods and New Classes
	With Stdin/Stdout Interface
	With Windowing Interface
	Incompatibilities
	Implementors Guide
	Finding Your Way Around
	Defining System Characteristics
	Define Options
	Building an Initial Image
	Object Memory
	The Bottom End
	Editing
	Editing Under Unix
	Editing on the Macintosh
	Input/Output Commands
	Primitives
	Installation
	Atari
	Gnu C Compiler
	HP-UX
	IBM PC
	Macintosh
	Sequent Balance
	TekTronix 4315
	VAX / VMS
	Test Cases
	Standard Windows
	Possible Changes
	New Features
	Differences from Smalltalk-80
	Class Descriptions
	Class Object
	Class UndefinedObject
	Class Symbol
	Class Boolean
	Class True
	Class False
	Class Magnitude
	Class Char
	Class Number
	Class Integer
	Class Float
	Class Radian
	Class Point
	Class Random
	Class Collection
	Bag/Set
	KeyedCollection
	Dictionary
	Smalltalk
	SequenceableCollection
	Interval
	List
	Semaphore
	File
	ArrayedCollection
	Array
	ByteArray
	String
	Block
	Class
	Process
	Syntax Example
	References

